CONVERGENCE IN PROBABILITY OF RANDOM POWER SERIES AND A RELATED PROBLEM IN LINEAR TOPOLOGICAL SPACES(1)

BY

LUDWIG ARNOLD

ABSTRACT

A linear topological space is said to have the circle property if every power series with coefficients in it has a circle of convergence. Every complete locally convex or locally bounded space has the circle property, but not a certain class of F-spaces including the space of all random variables on a non-atomic probability space, endowed with the topology of convergence in probability.

1. Introduction. Let (Ω, F, P) be a probability space and $\{a_n(\omega)\}_{n=0}^{\infty}$ and arbitrary sequence of complex-valued random variables defined on it. The formal power series

$$F(z,\,\omega)=\sum_{n=0}^{\infty}a_n(\omega)z^n$$

where z is an element of the complex plane C, is called a random power series. Such a series is said to converge (in any mode considered in probability theory) at the point z if the sequence of its partial sums converges at z.

Recently [1, 2] we gave an example of a random power series converging in probability only at the points z = 0 and z = 1, and nowhere else(²).

Therefore, in general, for the convergence in probability of a random power series there exists no so-called *circle of convergence* (i.e. a circle around z = 0such that we have convergence inside but divergence outside). On the other hand, such a circle always exists for almost sure convergence and convergence in the pth mean (p > 0).

The first aim of this note is to characterize the class of probability spaces (Ω, F, P) , for which every random power series which can be defined on it has a circle of convergence in probability.

Furthermore, the set $M(\Omega, F, P)$ of all equivalence classes of complex-valued random variables defined on (Ω, F, P) , endowed with the topology of convergence

Received August 23, 1966. (1) Research sponsored by the National Science Foundation under Grant No. GP 6035.

⁽²⁾ Professor H. Rubin pointed out that the constructions given in [1], p. 86 and [2], p. 6 can be generalized to give a random power series converging in probability at z = 0 and in a prescribed denumerable set of complex numbers having no finite limit point, but nowhere else.

in probability, forms a linear topological space, in particular an F-space (see e.g. [4], p. 329). This leads our attention to the power series

(1)
$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

whose coefficients a_n are elements of an arbitrary linear topological space X over the complex field C, and $z \in C$. Such a space X is said to have the *circle property*, if every power series (1) possesses a circle of convergence. For instance, every Banach space has the circle property ([9], or [4] pp. 224-232), and in this case the circle of convergence of (1) has radius ($\lim \sup \sqrt[n]{\|a_n\|}^{-1}$.

Our second aim is to give some sufficient conditions for the circle property and to describe a class of spaces which fail to have this property.

2. Probability spaces with the circle property. Let (Ω, F, P) be an arbitrary probability space. A set $A \in F$ is called an *atom* if P(A) > 0, and if $B \in F$, $B \subset A$, then either P(B) = P(A) or P(B) = 0. If $\{A_n\}$ is the (at most countable) family of disjoint atoms of (Ω, F, P) and if $P(\Omega - \bigcup A_n) = 0$, the probability space is called *atomic*.

THEOREM 1. Every random power series with coefficients defined on a fixed probability space (Ω, F, P) has a circle of convergence in probability if and only if (Ω, F, P) is atomic.

Proof. (a) Suppose (Ω, F, P) is atomic. Then convergence in probability is equivalent to almost sure convergence. But for the latter there always exists a circle of convergence.

(b) Suppose P(B) > 0 where $B = \Omega - \bigcup A_n$. In this case we can construct a random power series without a circle of convergence in probability. To avoid redundance, let us assume that $B = \Omega$.

By a theorem of S. Saks (see [4], p. 308), for every $\varepsilon > 0$ there exist finitely many disjoint sets $B_1, \dots, B_m \in F$ with $\bigcup B_j = \Omega$ and $0 < P(B_j) \leq \varepsilon$. We set $\varepsilon = \varepsilon_k$ where $\varepsilon_k > 0$, $\varepsilon_k \to 0$ ($k \to \infty$), and arrange the elements of the resulting partitions of Ω for $k = 1, 2, \cdots$ in a sequence $\{C_n\}$.

Now let $s_0(\omega) = 0 \forall \omega$ and

$$s_n(\omega) = n^n I_{C_n}(\omega) \qquad (n \ge 1),$$

where I_A denotes the indicator function of a set A. The random power series $\sum s_n z^n$ cannot converge in probability at any $z \neq 0$. For, if $z \neq 0$ is fixed and $C_{n_0}, \dots, C_{n_1}(n_0 \leq \dots \leq n_1)$ are the elements of a complete partition of Ω with $(n_0 \mid z \mid)^{n_0} \geq 1$, we have

$$P\left\{\omega \mid \left|\sum_{n_0}^{n_1} s_n(\omega) z^n\right| \ge 1\right\} = P\Omega = 1.$$

Now let us consider the series $\sum a_n z^n$ where $a_0(\omega) = 0 \forall \omega$ and $a_n = s_n - s_{n-1}$ $(n \ge 1)$. We have

$$\sum_{0}^{n} a_{k} z^{k} = s_{n} z^{n} + (1 - z) \sum_{0}^{n-1} s_{k} z^{k}$$

and $s_n z^n \to 0$ in probability $\forall z (n \to \infty)$, since $\varepsilon_k \to 0$.

Hence, $\sum a_n z^n$ converges in probability at z = 0 and z = 1 but at no other point. Otherwise

$$(1-z)^{-1}\left(\sum_{0}^{n} a_{k}z^{k} - s_{n}z^{n}\right) = \sum_{0}^{n-1} s_{k}z^{k}$$

would converge, in contradiction to what was proved above, q.e.d.

3. Power series with coefficients in a linear topological space. As mentioned above, in the F-space $M = M(\Omega, F, P)$ with norm

$$\|x\| = E \frac{|x(\omega)|}{1+|x(\omega)|} = \int_{\Omega} \frac{|x(\omega)|}{1+|x(\omega)|} dP$$

we have $||x_n - x|| \to 0$ if and only if $x_n \to x$ in probability.

So considered, Theorem 1 states that M has the circle property if and only if it is isomorphic either to an Euclidean space (in the case of finitely many atoms) or to the *F*-space (s) of all complex sequences $c = (c_1, c_2, \cdots)$ with the norm

$$||c|| = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|c_n|}{1+|c_n|}$$

(in the case of countably many atoms).

Now let us consider the general case (1). Ordinary convergence (0) of a series $\sum x_n, x_n \in X$, is defined as usual. We follow A. Dvoretzky [5] and call $\sum x_n$ absolutely convergent (A) if

$$\sum_{n} p_{V}(x_{n}) < \infty$$

for every neighborhood V of $0 \in X$, where $p_V(x)$ is the Minkowski functional of V at x, i.e.

$$p_V(x) = \inf \{\lambda \mid \lambda > 0, x \in \lambda V\}.$$

In a linear metric space with norm ||x||, the series $\sum x_n$ is said to converge metrically (M) if $\sum ||x_n|| < \infty$. In such a space we have $M \Rightarrow A$, in Banach spaces $M \Leftrightarrow A$, in F-spaces $M \Rightarrow O$.

1967]

In general, in an arbitrary linear topological space A does not entail O, and O does not entail A. But, for a power series (1) we have the following simple facts:

LEMMA 1. Let X be a linear topological space and (1) a power series in X. (a) There always exists a circle of convergence for A.

(b) O at z_1 (or only $\{a_n z_1^n\}$ bounded) $\Rightarrow A$ at every z with $|z| < |z_1|$.

Proof. (a) For each linear topological space the family W of circled³ neighborhoods of 0 is a local base (see [6], p. 35), so that it is sufficient to consider W. For every $U \in W$

$$p_U(\alpha x) = \left| \alpha \right| p_U(x) \, \forall \, \alpha \in C$$

see [6], p. 15). Therefore

$$\sum p_U(a_n z^n) = \sum p_U(a_n) \left| z \right|^n$$

converges in a circle with radius $(\limsup \sqrt[n]{p_U(a_n)})^{-1}$, and altogether we have A for

$$\left|z\right| < r(A) = \inf_{U \in W} (\limsup \sqrt[n]{p_U(a)})^{-1},$$

and absolute divergence of (1) $\forall |z| > r(A)$.

(b) O at z_1 implies $a_n z_1^n \to 0$. A convergent sequence in a linear topological space is bounded, so that for every $U \in W$ there exists an $\varepsilon > 0$ such that $\alpha a_n z_1^n \in U \forall n$ whenever $|\alpha| \leq \varepsilon$. Thus, for $|z| < |z_1|$

$$\Sigma p_U(a_n z^n) = \Sigma p_U\left(a_n z_1^n \left(\frac{z}{z_1}\right)^n\right) = \Sigma p_U(a_n z_1^n) \left|\frac{z}{z_1}\right|^n \leq \frac{1}{\varepsilon} \Sigma \left|\frac{z}{z_1}\right|^n < \infty,$$

q.e.d.

We denote by r(A) the radius of the A-circle, and if X has the circle property (for O), we denote the corresponding radius by r(O).

LEMMA 2. Let $X = \prod_{t \in T} X_t$ be the Cartesian product of linear topological spaces X_t each having the circle property with $r^{(t)}(O) = r^{(t)}(A) = r, \forall t \in T$. Then X also has the circle property with

$$r(0) = r(A) = \inf_{t \in T} r_t.$$

Proof. These statements follow at once from the fact that a series $\sum x_n$ in $X, x_n = (\dots, x_n^{(t)}, \dots)$, converges O(A) if and only if $\sum x_n^{(t)}$ converges $O(A) \forall t \in T$, q.e.d.

Lemma 2 already covers the atomic case of Theorem 1. Lemma 1(b) states that one part of the classical situation can be found in every linear topological

⁽³⁾ A set V in a linear space is circled if $aV \subset V$ whenever $|a| \leq 1$.

space. The other part, $A \Rightarrow O$, would, together with Lemma 1(b), imply the circle property and r(O) = r(A). But for this we need additional conditions. For instance, every finite-dimensional space has the circle property with r(O) = r(A). Other classes will be described below.

4. Complete locally convex spaces.

THEOREM 2. If X is a complete locally convex space, then $A \Rightarrow 0$, so that X has the circle property and r(0) = r(A) for every power series (1).

Proof. $A \Rightarrow O$ follows easily from the fact that the Minkowski functional of a circled convex body is a pseudonorm and X is complete. The rest follows from Lemma 1, q.e.d.

It should be mentioned that it is possible to develop a satisfactory theory of holomorphic functions defined in a domain $G \subset C$ with values in a complete locally convex space (see also [7]).

5. Complete locally bounded spaces. Each locally bounded ispace (i.e. a space possessing an open bounded set) can be endowed with a *p*-homogeneous norm ||x|| (i.e. $||\alpha x|| = |\alpha|^p ||x|| \quad \alpha \in C$ where 0) reproducing the original topology (see [8]). Conversely, a linear metric space with a*p*-homogeneous norm is locally bounded.

THEOREM 3. If X is a complete locally bounded space and if r(M) denotes the radius of M-convergence of (1) with respect to a (always existing) p-homogeneous norm $\|\cdot\|$, X has the circle property with

$$r(O) = r(A) = r(M) = (\limsup \sqrt[n]{\|a_n\|})^{-1/p}$$

Proof. Clearly, by the *p*-homogenity of $\|\cdot\|$, we have $r(M) = (\limsup \sqrt[n]{\|a_n\|})^{-1/p}$. Taking into account the relations among O, A, and M stated in section 3 it remains to prove r(A) = r(M). This follows from the fact that for a *p*-homogeneous norm $\sum \|x_n\|^{1/p} < \infty$ is a necessary and sufficient condition for A-convergence of $\sum x_n$, q.e.d.

Consider an arbitrary *F*-space X with norm $\|\cdot\|$. Without loss of the generality, we can always assume that $\|\alpha x\| \leq \|x\|$ for $|\alpha| \leq 1$, so that the domain of *M*-convergence is a circle. The function

$$\phi(\alpha) = \sup_{\substack{x \in X \\ x \neq 0}} \frac{\|\alpha x\|}{\|x\|} \qquad (\alpha \ge 0)$$

has the properties $\phi(0) = 0$, $\phi(1) = 1$, $\phi(\alpha + \beta) \leq \phi(\alpha) + \phi(\beta)$, $\phi(\alpha\beta) \leq \phi(\alpha)\phi(\beta)$, and is increasing with α . Clearly, since $\phi(\alpha^2) \leq \phi(\alpha)^2$, we have either $\phi(+0) = 1$ (and hence $\phi(\alpha) = 1 \quad \forall \alpha \in (0,1]$) or $\phi(+0) = 0$. If $\|\cdot\|$ is *p*-homogeneous, $\phi(\alpha) = \alpha^p$. For (s) and *M* and in general for a bounded norm we have $\phi(+0) = 1$, but the same is true also for the unbounded norm $||x|| = \log(1 + |x|)$ on the real axis. However, we have

THEOREM 4. If for an F-space X

$$\phi(+0) = 0$$

then X has the circle property with r(0) = r(A) = r(M).

Proof. Since $||\alpha x|| \leq \phi(\alpha) ||x||$, X has bounded spheres and is therefore locally bounded whence r(O) = r(A). For r(O) = r(M) it is sufficient to show that O at z_1 entails M in $|z| < |z_1|$. Indeed, O at z_1 implies $||a_n z_1^n|| \to 0$ so that $||a_n z_1^n|| \leq c \forall n$. Now let $|z| < |z_1|$. We have

$$\sum_{0}^{N} \|a_n z^n\| = \sum_{0}^{N} \|a_n z_1^n \left(\frac{z}{z_1}\right)^n\| \leq c \sum_{0}^{N} \phi\left(\left|\frac{z}{z_1}\right|^n\right).$$

The right hand side is bounded for $N \to \infty$ for every $|z| < |z_1|$ if and only if $\sum \phi(\alpha^n) < \infty \forall \alpha \in [0, 1]$. Applying the integral criterion this is equivalent to

$$\int_0^1 \frac{\phi(\alpha)}{\alpha} d\alpha < \infty.$$

But there exists an $\alpha_0 \in (0, 1)$ with $\phi(\alpha_0) = d < 1$, therefore $\phi(\alpha_0^n) \leq d^n$ and

$$\int_0^1 \frac{\phi(\alpha)}{\alpha} dq = \sum_{n=0}^{\infty} \int_{\alpha_0^{n+1}}^{\alpha_0^n} \frac{\phi(\alpha)}{\alpha} d\alpha \leq \log \frac{1}{\alpha_0} \sum_{n=0}^{\infty} d^n < \infty,$$

q.e.d.

Theorems 3 and 4 apply, for instance, to L_p , l_p , and H_p ($0). In a locally convex F-space, we have in general only <math>r(O) = r(A) \ge r(M)$ where the inequality may be strict as examples in (s) show.

We note that local convexity or local boundedness are only sufficient conditions for the circle property. For instance, $X = (L_p)^{\infty}$ (0) is neither locallyconvex nor locally bounded, but has the circle property by Theorem 3 andLemma 2.

6. *F*-spaces without circle property. We simulate in a general *F*-space what led to the construction of the counterexample in the non-atomic case of Theorem 1:

THEOREM 5. Let X be an F-space. If there exist a constant c > 0 and for every $\varepsilon > 0$ a finite number $n = n(\varepsilon)$ of elements $x_1, \dots, x_n \in X$ with

$$\sup_{\alpha \in C} \|\alpha x_i\| \leq \varepsilon \text{ for } i = 1, \cdots, n$$

and

$$\left\|\sum_{1}^{n} x_{i}\right\| \geq c$$

then for every z_1, z_2 $(0 < |z_1| < |z_2|)$ there exists a power series $\sum a_n z^n$ converging O at $z = z_2$ (to $0 \in X$) but diverging O at $z = z_1$.

Proof. Let $\varepsilon_k \to 0$ and let $x_1^{(k)}, \dots, x_{n_k}^{(k)}$ be the elements fulfilling the above conditions for $\varepsilon = \varepsilon_k$, set $h_0 = 0$, $h_1 = n_1$, $h_k = n_1 + \dots + n_k$, $s_0 = 0 \in X$, and for $h_{k-1} < j \le h_k$, $k = 1, 2, \dots$

$$s_j = \left(\frac{z_2}{z_1}\right)^j x_{j-h_{k-1}}^{(k)}.$$

Then the power series $\sum a_n z^n$ with $a_0 = 0$ and

$$a_n = z_2^{-n}(s_n - s_{n-1}) \qquad (n \ge 1)$$

has the required property. Indeed

(3)
$$\sum_{0}^{N} a_{n} z^{n} = \left(\frac{z}{z_{2}}\right)^{N} s_{N} + \left(1 - \frac{z}{z_{2}}\right) \sum_{0}^{N-1} \frac{s_{n}}{z_{2}^{n}} z^{n},$$

so that for $z = z_2$

$$\left\|\sum_{0}^{N} a_{n} z^{n}\right\| = \left\|s_{N}\right\| \leq \varepsilon_{k}$$

for $h_{k-1} < N \le h_k$. Thus, $\sum a_n z^n$ converges O at $z = z_2$ because $\varepsilon_k \to 0$. On the other hand, if $\sum a_n z_1^n$ would converge O, so also, by (3) and $s_N(z_1/z_2)^N \to 0$ would $\sum s_n z_1^n z_2^{-n}$. This is impossible since by definition of the s_n 's

$$\left\|\sum_{h_{k-1}+1}^{h_k} s_n z_1^n z_2^{-n}\right\| = \left\|\sum_{j=1}^{n_k} x_j^{(k)}\right\| \ge c$$

and the space X is complete, q.e.d.

Theorem 5 characterizes a class of F-spaces containing arbitrarily short straight lines (i.e. for every neighborhood V of $0 \in X$ there corresponds some $x \neq 0$ for which $\alpha x \in V \forall \alpha \in C$). These spaces are necessarily of infinite dimension. On the other hand, we have

THEOREM 6. Every F-space having arbitrarily short straight lines contains an infinite-dimensional subspace which has the circle property with r(O) = r(A).

Proof. By Theorem 9 of [3], an arbitrary F-spaces has arbitrarily short straight lines if and only if it contains a subspace isomorphic to (s). But (s) has the circle property, with r(O) = r(A), q.e.d.

References

1. L. Arnold, Über die Konvergenz einer zufälligen Potenzreihe, J. Reine Angew. Math. 222 (1966), 79-112.

2. L. Arnold, *Random Power Series*, Statistical Laboratory Publications No. 1 (1966), Michigan State University, East Lansing, Michigan.

3. C. Bessaga, A. Pełczyński and S. Rolewicz, Some Properties of the Space (s), Colloq. Math. 7 (1959), 45-51.

4. N. Dunford and J. T. Schwartz, Linear Operators, Part 1, New York, 1958.

5. A. Dvoretzky, On series in linear topological spaces, Israel J. Math. 1 (1963), 37-347.

6. J. L. Kelley and I. Namioka, Linear Topological Spaces, Princeton, N. J., 1963.

7. R. S. Phillips, Integration in a convex linear topological space, Trans. Amer. Math. Soc. 47 (1940), 114-145.

8. S. Rolewicz, On a certain class of linear metric spaces, Bull. Acad. Pol. Sci. Cl. III, 5 (1957), 471-473.

9. N. Wiener, Note on a paper of M. Banach, Fund. Math. 4 (1923), 136-143.

MICHIGAN STATE UNIVERSITY, EAST LANSING AND TECHNISCHE HOCHSCHULE, STUTTGART