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ABSTRACT 

A linear topological space is said to have the circle property if every power 
series with coefficients in it has a circle of convergence. Every complete locally 
convex or locally bounded space has the circle property, but not a certain 
class of F-spaces including the space of all random variables on a non-atomic 
probability space, endowed with the topology of convergence in probability. 

1. Introduction. Let (f~,F,P) be a probability space and {an(to)}~=o an 
arbitrary sequence of complex-valued random variables defined on it. The formal 
power series 

F(z, 09)= ~ an(og)z" 
n = 0  

where z is an element of  the complex plane C, is called a random power series. 
Such a series is said to converge (in any mode considered in probability theory) 

at the point z if the sequence of its partial sums converges at z. 

Recently [1, 21 we gave an example of  a random power series converging in 

probability only at the points z = 0 and z = 1, and nowhere else(2). 
Therefore, in general, for the convergence in probability of  a random power 

series there exists no so-called circle of convergence (i.e. a circle around z = 0 
such that we have convergence inside but divergence outside). On the other hand, 
such a circle always exists for almost sure convergence and convergence in the 
pth  mean (p > 0). 

The first aim of  this note is to characterize the class of  probability spaces 

(f~, F, P), for which every random power series which can be defined on it has a 
circle of  convergence in probability. 

Furthermore, the set M(f~, F, P) of  all equivalence classes of  complex-valued 

random variables defined on (f~, F, P), endowed with the topology of convergence 
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in probability, forms a linear topological space, in particular an F-space (see 
e.g. [4], p. 329). This leads our attention to the power series 

o0 

(1) f (z)  = ~, anz ~ 
n = O  

whose coefficients a~ are elements of an arbitrary linear topological space X over 
the complex field C, and z ~ C. Such a space X is said to have the circle property, 
if  every power series (1) possesses a circle of convergence. For instance, every 
Banach space has the circle property ([9], or [4] pp. 224-232), and in this case 
the circle of convergence of (1) has radius (lim sup ~ - 1 .  

Our second aim is to give some sufficient conditions for the circle property and 
to describe a class of spaces which fail to have this property. 

2. Probability spaces with the circle property. Let (f~, F, P) be an arbitrary 
probability space. A set A e F is called an atom if P(A) > 0, and if B e F, B c A, 
then either P(B)= P(A) or P(B)= 0. If  {A,} is the (at most countable) family 
of disjoint atoms of (f~,F,P) and if P(f~ - uAn) = 0, the probability space is 
called atomic. 

T r m o ~  1. Every random power series with coefficients defined on a fixed 
probability space (~,F,P) has a circle of convergence in probability if  and 
only if  (f~,F,P) is atomic. 

Proof. (a)Suppose (f~,F,P) is atomic. Then convergence in probability 
is equivalent to almost sure convergence. But for the latter there always exists 
a circle of  convergence. 

(b) Suppose P(B)> 0 where B = f ~ -  u A , .  In this case we can construct a 
random power series without a circle of convergence in probability. To avoid 
redundance, let us assume that B = f~. 

By a theorem of S. Saks (see [4], p. 308), for every 8 > 0 there exist finitely 
many disjoint sets Bt, . . . ,Bm¢F with uB~ = t~ and 0 < P(B~) < 8. We set 8 = e~ 
where ~ > 0, ek ~ 0(k ~ oo), and arrange the elements of the resulting partitions 
off~ for k = 1,2, ... in a sequence {Cn}. 

Now let So(tO) = 0 V tO and 

sn(tO) = n~Ic,,(tO) (n > 1), 

where IA denotes the indicator function of a set A. The random power series 
?Es, z" cannot converge in probability at any z # 0. For, if z # 0 is fixed and 
C,o, "", C~l(no < "" < ni) are the elements of a complete partition of f~ with 
(nol "° x, we have 

 {ol I 
rio 
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Now let us consider the series Y~a.z" where ao(o~) = 0¥o~ and a. = s. - s._ 1 
(n ~ 1). We have 

. - - 1  

akz k = S.Z" + (1 -- Z) ]E SkZ k 
0 0 

and s,z" ~ 0 in probability Yz (n  ~ oo), since ek "-* 0. 
Hence, lEa.z" converges in probability at z = 0 and z = 1 but at no other 

point, Otherwise 

) n--1 
( l - z )  -1 ~.. akz k - s.z n = ~ SkZ k 

0 0 

would converge, in contradiction to what was proved above, q.e.d. 

3. Power series with coefficients in a linear topological space. As mentioned above, 
in the F-space M = M(f~, F, P) with norm 

Ix<° )l f.  I dP Ilxll = E  = 1 ~ [ x ~ )  I 

we have I1 - x II ~ 0 if and only if x. ~ x in probability. 
So considered, Theorem 1 states that M has the circle property if and only if 

it is isomorphic either to an Euclidean space (in the case of finitely many atoms) 
or to the F-space (s) of all complex sequences c = (Ca, c2 , ' " )  with the norm 

°° 1 ]c,I 
Ilcll = z .=, z. l+lc.I  

(in the case of countably many atoms). 
Now let us consider the general case (1). Ordinary convergence (0) of a series 

~,x., x . ~ X ,  is defined as 
absolutely convergent (A) if 

usual. We follow A. Dvoretzky [5] and call ]Ex, 

E pv(x.) < 
n 

for every neighborhood V of 0 ~ X, where pv(X) is the Minkowski functional of V 
at x, i.e. 

pv(x) = i n f { ~ [ z  > 0, x ~ x v } .  

In a linear metric space with norm II x [I, the series ]~x. is said to converge 

metrically (M)  if ]~1[ x. ]l < oo. In such a space we have M =~ A, in Banach spaces 
M ~.A,  in F-spaces M =~ O. 
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In general, in an arbitrary linear topological space A does not entail O, and 0 
does not entail A. But, for a power series (1) we have the following simple facts: 

LEM3~A 1. Let X be a linear topological space and (1) a power series in X.  
(a) There always exists a circle of convergence for  A. 
(b) O at z I (or only {anz~} bounded)=:, A at every z with [z[ < [zt[. 

Proof. (a) For each linear topological space the family W of circled 3 neigh- 
borhoods of 0 is a local base (see [6], p. 35), so that it is sufficient to consider W. 
For every U ~ W 

see [6], p. 15). Therefore 

= I [ p (x) v c 

Xpu(a.z") - X pu(an) l z I n 

converges in a circle with radius (lim sup ~ / ~ -  t, and altogether we have A for 

[ z [ < r(A) = inf (lim sup ~ / ~ ) -  ' ,  
U e W  

and absolute divergence of (1) V I z I > r(A). 

(b) O at zl implies anZ ~ - +  0. A convergent sequence in a linear topological 
space is bounded, so that for every U e W there exists an e > 0 such that 
o ta . z ]eUVn whenever I~'1 =<~. Thus, for Izl < l z ,  I 

( ~ ( z ~ ) " )  ~lZ~]" 1 Z~ n ~,Pv(an zn) = ~,Pv a.z = Y~pu(a.z < -~ ~, < oo, 

q.e.d. 
We denote by r(A) the radius of the A-circle, and if X has the circle property 

(for 0),  we denote the corresponding radius by r(O). 

LEMMA 2. Let X = I I ,~TX,  be the Cartesian product o f  linear topological 
spaces X t each having the circle property with r(°(O) = r t ° (A) - -  r, V t ¢  T. 
Then X also has the circle property with 

r(O) = r(A) = inf rr  
t e T  

Proof. These statements follow at once from the fact that a series :~:x, in 
x (o X,  x,  = (..., , ,...), converges O(A) if and only if ]~x~ t) converges O(A)Vt e T, q.e.d. 

Lemma 2 already covers the atomic case of Theorem 1. Lemma l(b) states 
that one part of the classical situation can be found in every linear topological 

(3) A set V in a linear space is circled if aV c V whenever I a I ~ 1. 
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space. The other part, A =~ O, would, together with Lemma l(b), imply the circle 
property and r(O) = r(A). But for this we need additional conditions. For instance, 
every finite-dimensional space has the circle property with r(O)= r(A). Other 
classes will be described below. 

4. Complete locally convex spaces. 
TI-mOR£M 2. I f  X is a complete locally convex space, then A =~ O, so that X 

has the circle property and r(O) = r(A) for every power series (1). 

Proof. A =~ O follows easily from the fact that the Minkowski functional 
of a circled convex body is a pseudonorm and X is complete. The rest follows 
from Lemma 1, q.e.d. 

It should be mentioned that it is possible to develop a satisfactory theory of 
holomorphic functions defined in a domain G c C with values in a complete 
locally convex space (see also [7]). 

5. Complete locally bounded spaces. Each locally bounded Ispace (i.e. a space 
possesing an open bounded set) can be endowed with a p-homogeneous norm 

II x 11 0.e. II ~x II -- I~ I ~11 x II ~ ~ C where 0 < p < 1) reproducing the original 
topology (see [8]). Conversely, a linear metric space with a p-homogeneous norm 
is locally bounded. 

TrmOREM 3. I f  X is a complete locally bounded space and if r(M) denotes 
the radius of M-convergence of (1) with respect to a (always existing) p-homo- 
geneous norm LII[, X has the circle property with 

r(O) = r(A) = r(M) = (lim sup ~ / ~ -  l/p. 

Proof. Clearly, by the p-homogenity of II" II, we have r(M)= (lira sup ~/II a,, II)-'/~. 
Taking into account the relations among O, A, and M stated in section 3 it remains 
to prove r(A) = r(M). This follows from the fact that for a p-homogeneous norm 

II x, II 1,~< oo is a necessary and sufficient condition for A-convergence of ]~x,, 
q.e.d. 

Consider an arbitrary F-space X with norm l~ll-111 Without loss of the generality, 
we can always assume that II ~x II---< II x II for < 1, so that the domain of M- 
convergence is a circle. The function 

q~(~) = sup [I ctx II (~ ~ o) 
~.x  IIxil 
x#O 

has the properties ~b(O) -- O, ~b(1) = 1, ~b(0~ + fl) ~ ~(u) + ~b(fl), ~b(ufl) ~ qS(00~(fl), 
and is increasing with ~. Clearly, since ~(~2) =< ~(~)2, we have either ~b( + O) = 1 
(and hence ~b(~)=l ¥~e(O,1]) or ~b(+O)=O. If [[. 1[ is p-homogeneous, 
~(~) -- ~P. For (s) and M and in general for a bounded norm we have ~( + O) = 1, 
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but the same is true also for the unbounded norm Ilxll = l o g ( I  + Ixl) on the 
real axis. However, we have 

TI-mOREM 4. I f  for an F-space X 

~(+o) =o 

then X has the circle property with r(O) = r(A) = r(M). 

Proof. Since [10tx II < ~(~t)II x II, x has bounded spheres and is therefore locally 
bounded whence r(O)= r(A). For r(O)= r(M) it is sufficient to show that 0 at zt 
entails M in Izl < [zl I" Indeed, 0 at zl implies [I a,z~ II ~ O so that I[ a,z~ [I ~ c  Y n. 
Now let [z[ < [  z tl. We have 

z II a.z"ll = ~o II a.z  II __<c Z ,  
o o 

The right hand side is bounded for N ~ oo for every I z I < [zt ] if and only if 
~ ( = " )  < oo v~ e [o, 1]. Applying the integral criterion this is equivalent to 

fo 1 as < oo. 

,~(=) 

But there exists an % ~ (0,1) with ~(%) = d < 1, therefore ~(0t~ < d" and 

f . 1  dq = _ d~ =< log Z < o% 
dO ~ n = 0  ~+1 O~ n 

q.e.d. 
Theorems 3 and 4 apply, for instance, to Lv, I v, and H v (0 < p < 1). In a locally 

convex F-space, we have in general only r(O) = r(A) >= r(M) where the inequality 
may be strict as examples in (s) show. 

We note that local convexity or local boundedness are only sufficient conditions 
for the circle property. For instance, X = (Lp) °° (0 < p < 1) is neither locally 
convex nor locally bounded, but has the circle property by Theorem 3 and 
Lemma 2. 

6. F-spaces without circle property. We simulate in a general F-space what led to 
the construction of the counterexample in the non-atomic case of Theorem 1: 

THEOREM 5. Let X be an F-space. I f  there exist a constant c > 0 and for 

every 8 > 0 a finite number n = n(O of elements x~, . . . ,x,  e X with 

sup II =x, for i =  1, ..., n 
~teC 

and 

II z x, II >__c 
1 
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then for every zl ,  z2 (0 < [zl[ < [z2]) there exists a power series Y~a~z ~ con- 
verging 0 at z = zz (to OEX) but diverging 0 at z = z 1. 

ProoL Let 8k--*0 and let xt ¢t), ~t~) be the elements fulfilling the above ° '° '  J~'k 

conditions for e=ek,  set he=O, hi = n l ,  h t = n l  +.." +nt ,  s o = O c X ,  and 
for hk-1 < J ~ hk, k = 1, 2, ... 

i z 2 \  J ~ 
s, = 

Then the power series ~a,,z" with ao = 0 and 

a, = z~"(s, - s , - t )  

has the required property. Indeed 

(3) 

so that for z = zz 

for hi-1 < N _ h k. Thus, 

(n _>-- 1) 

Y, a : "  = sN + 1 - z S~ z~ ' 
0 0 Z~ 

N 

11 a,z" II II sN II 8, 

Y a : "  converges O at z = z 2 because ek -* 0. On the 
other hand, if ~a ,z~would converge O, so also, by (3) and SN(Zl/Z2)M--~ 0 would 
Ys,z~z2-? This is impossible since by definition of the s,'s 

h• n~ X (k) 
snz~zi" = > c 

- 1 = ,  J l l - -  hk + 1 

and the space X is complete, q.e.d. 
Theorem 5 characterizes a class of F-spaces containing arbitrarily short 

straight lines (i.e. for every neighborhood V of 0 e X  there corresponds some 
x # 0 for which ctx e V V ~t e C). These spaces are necessarily of infinite dimension. 
On the other hand, we have 

Trmor.EM 6. Every F-space having arbitrarily short straight lines contains 
an infinite-dimensional subspace which has the circle property with r(O) = r(A). 

Proof. By Theorem 9 of [3], an arbitrary F-spaces has arbitrarily short 
straight lines if and only if it contains a subspace isomorphic to (s). But (s) has the 
circle property, with r(O) = r(A), q.e.d. 
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